
1.  Introduction
Lightning discharges in winter thunderstorms in Japan exhibit many unique features. The most well known 
feature is the frequent production of positive cloud-to-ground (CG) lightning flashes (Brook et al., 1982; 
Takeuti et al.,  1978). Exceptionally powerful and energetic positive CG flashes in winter thunderstorms 
have been observed and investigated extensively and are known to induce transient luminous events 
such as sprites and elves (Adachi, 2005; Hayakawa, 2004; Matsudo et al., 2007; Suzuki et al., 2006; Wang 
et al., 2021). By contrast, strong negative CG flashes or return strokes in winter thunderstorms are much 
less well known.

Strong electric field change (E-change) pulses with the same polarity as those of negative return strokes 
in winter thunderstorms in Japan have been reported by a few studies but their physical mechanism is 
not yet clear. Ishii and Saito (2009) reported strong electric field change (E-change) waveforms that were 
associated with transmission-line faults in winter along the Japan Sea coast. Some of the waveforms had 
the same polarity as those produced by negative return strokes but were quite different from those of typical 
return strokes. Ishii and Saito (2009) attributed these waveforms to upward lightning. Wu et al. (2014) re-
ported the so-called “large bipolar events” (LBEs) that produced characteristic large and bipolar E-change 
waveforms. LBEs were almost always found on land so they were believed to be associated with tall objects. 
Wada et al. (2020) observed two downward terrestrial gamma-ray flashes (TGFs) in winter thunderstorms 
and found that both TGFs were associated with strong pulses with estimated peak currents of −260 kA 
and −197 kA. These strong pulses were quite similar to those reported by Ishii and Saito (2009) and were 
interpreted by Wada et al. (2020) as energetic in-cloud pulses (Lyu et al., 2015), which is a type of intracloud 
discharge closely associated with TGFs. Similar strong pulses were also reported by Wu et al. (2020b) to 
trigger upward negative leaders from tall objects. Wu et al. (2020b) speculated that these strong pulses were 
produced by special negative return strokes. These scarce and contradictory reports of strong negative dis-
charges fully reveal how little we know about negative strokes in winter thunderstorms.
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In this study, we will demonstrate that negative return strokes with estimated peak currents larger than 
150 kA (absolute value) in winter thunderstorms in Japan mostly produce E-change waveforms that are 
generally different from normal return stroke waveforms but are very similar to strong pulses reported by 
the above-mentioned studies. Our results also indicate that many, if not all, of the strong pulses reported 
by previous studies, were also produced by strong negative return strokes. Due to the unusual waveforms, 
the existence of these strongest negative return strokes is not yet recognized by the lightning research com-
munity, and at least some of these strokes are apparently not identified by nationwide lightning location 
systems.

2.  Observation and Data
2.1.  Winter Observation With the FALMA

A fast antenna lightning mapping array (FALMA) system including 14 observation sites were set up for 
the winter observation in the Hokuriku region of Japan from December 2018 to March 2019. Locations 
of these 14 sites are shown in Figure S1 in Supporting Information S1 and can also be found in our pre-
vious studies (e.g., Wu et al., 2020b). The FALMA is a low-frequency lightning mapping system using fast 
antennas as the sensors (Wu et al., 2018). Every site records E-change waveforms in the frequency range 
of 500 Hz to 500 kHz with a sampling rate of 10 MHz. The FALMA is capable of high-quality 3-D light-
ning mapping. However, during the winter observation, due to the fact that winter lightning discharges are 
close to the ground and are usually very complicated, location results of source height are not reliable (Wu 
et al., 2020a), so we will only use 2-D location results in this study.

The atmospheric electricity sign convention is used in this study, so a negative return stroke produces a 
positive E-change waveform.

2.2.  Data Selection

In this study, we will analyze negative strokes with estimated peak currents larger than 150 kA (absolute 
value). Peak currents are estimated by correlating normalized E-change magnitudes with peak currents 
reported by the Japanese Lightning Detection Network (JLDN; Matsui et  al.,  2019) as described by Wu 
et al. (2021). We identified all pulses having the same polarity as negative return strokes and having esti-
mated peak currents larger than 150 kA in a 150 𝐴𝐴 × 150 𝐴𝐴 km2 area shown in Figure S1 in Supporting Informa-
tion S1. A total of 104 pulses were identified. We will demonstrate that these strong pulses are produced by 
negative return strokes. Locations of these strokes are also shown in Figure S1 in Supporting Information S1.

Among the identified 104 strokes, 6 strokes saturated all FALMA sites. These six strokes are not included 
in the analyses of this study but their E-change waveforms are shown in Figure S2 in Supporting Informa-
tion S1. E-change waveform figures of the remaining 98 strokes are provided in the data repository.

2.3.  LAPOS Observation of a Strong Stroke

A stroke with a JLDN-reported peak current of −335 kA was observed in December of 2020 by the FALMA 
as well as a high-speed optical system called Lightning Attachment Process Observation System (LAPOS; 
Wang et al., 2013) and is analyzed separately in Section 3.3. The LAPOS was set up at the same location 
as the FALMA site represented by a red square in Figure S1 in Supporting  Information  S1. A detailed 
description of the LAPOS used for this study can be found in Wang et al. (2013). The LAPOS contains 14 
photodiodes including 7 photodiodes with high sensitivity and 7 with low sensitivity. Photodiodes with 
high and low sensitivities are aligned alternatively in the vertical direction, and each photodiode is config-
ured to measure the light intensity at a certain elevation angle. Light intensity waveforms from 14 photo-
diodes along with the GPS signal are recorded by an oscilloscope with a sampling rate of 10 MHz. Details 
of the location and the field of view of the LAPOS with respect to the stroke can be found in Figure S3 in 
Supporting Information S1.
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3.  Results
3.1.  E-Change Waveform

The most prominent feature of strong negative strokes in winter in Japan is that they produce E-change 
waveforms that are different from those produced by normal negative return strokes. Figures 1a–1j shows 
E-change waveforms of the 10 strongest negative strokes. As a direct comparison, Figure 1k shows the wave-
form of a typical first return stroke in a negative CG flash. The shape of stroke pulses in Figures 1a–1j are 
generally different from those of normal negative return strokes. Some common waveform characteristics 
of typical first return strokes in negative CG flashes, including much larger fall time than rising time, fine 
structure in the falling portion, and relatively small preceding leader pulses, cannot be seen in the strong 
strokes in Figures 1a–1j. More importantly, these strong strokes are preceded by discharges with very short 

Figure 1.  (a–j) E-change waveforms of the 10 strongest negative strokes. The red arrow indicates the first identified 
pulse before each stroke. The value of 𝐴𝐴 𝐴𝐴 represents the distance of the stroke to the site recording the plotted waveform. 
(k) Typical waveform of the first return stroke in a negative cloud-to-ground flash.
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durations, generally shorter than 500 𝐴𝐴 𝐴𝐴 s. Red arrows in Figures 1a–1j in-
dicate the first identified pulses before these strokes. Details about the 
identification of the first pulses can be found in Wu et al. (2021).

In fact, almost all negative strokes with peak currents larger than 150 kA 
have similar features to those in Figures 1a–1j. Figure 2a shows the dis-
tribution of durations of preceding discharges (defined as the time dif-
ference between the first identified pulse in the flash and the peak of the 
stroke pulse). Three strokes with exceptionally long preceding discharges 
are not included here and will be described in more detail later. Exclud-
ing these three special cases, Figure 2a shows that all strokes with peak 
currents larger than 150 kA are preceded by discharges with durations 
shorter than 700 𝐴𝐴 𝐴𝐴 s. The minimum and maximum durations in Figure 2a 
are 65.3 and 681.4 𝐴𝐴 𝐴𝐴 s, respectively, with a mean value of 252.8 𝐴𝐴 𝐴𝐴 s. Such 
short durations are due to fast downward negative leaders (velocity of one 
event is analyzed in Section 3.3) preceding the return stroke and the close 
proximity of winter thunderclouds to the ground. Furthermore, discharg-
es preceding the first return stroke in normal negative CG flashes consist 
of PB and stepped leader processes. Pulses before these strong strokes 
may be somewhat similar to PB pulses but they cannot be divided into 
two clearly different stages corresponding to the PB and stepped lead-
er processes. Enlarged waveforms of discharges preceding the strokes in 
Figures 1a–1j are shown in Figure S4 in Supporting Information S1.

Figures 2b–2e show statistics of pulse rise time, fall time, pulse width, 
and the ratio of fall time to rise time for these strokes. Definitions of these 
parameters are shown in Figure S5 in Supporting Information S1. Com-
pared with parameters of E-change waveforms of first strokes in negative 
CG flashes reported in the literature (Rakov & Uman, 2003), it is clear 
that these strong strokes in winter have a larger rise time but smaller 
pulse width. As a result, the ratio of the fall time to rise time is relatively 
small, resulting in somewhat symmetric stroke pulses. However, it is im-
portant to note that the fall time, pulse width, and the ratio of fall time 
to rise time are dependent on the duration of preceding discharges as 
demonstrated in Figures 2c–2e. Similar results were also reported for spe-
cial strokes in winter with durations of preceding discharges shorter than 
1 ms (Wu et al., 2021). We can see that as the duration of preceding dis-
charges increases, the fall time, the pulse width, and the ratio of fall time 
to rise time all increase, getting closer to waveform characteristics of first 
strokes in normal negative CG flashes. High correlations between dura-
tion of preceding discharges and waveform parameters of stroke pulses 
also indicate that both the stroke and preceding discharges are associated 
with the same channel, and a reasonable explanation is that preceding 
discharges are leader processes creating a channel in the virgin air and 

the stroke pulse is due to the return stroke traversing the same channel. Figure 2f shows that peak currents 
of strokes are also associated with durations of preceding discharges, which indicates that the strongest 
strokes usually have preceding discharges with durations of 200–300 𝐴𝐴 𝐴𝐴 s, as can also be seen in Figures 1a–1j.

Three special cases have durations of preceding discharges of 188, 27, and 16 ms and peak currents of 187, 
184, and 180 kA. Details of these three special cases are provided in Figures S6–S8 in Supporting Informa-
tion S1. It is interesting to note that although durations of preceding discharges of these cases are orders of 
magnitudes larger than other cases, the stroke pulses are generally similar to those in Figures 1a–1j. Since 
these cases are uncommon and their peak currents are not exceptionally strong, we will not analyze these 
special cases in this study.

Figure 2.  E-change waveform parameters of strong negative strokes 
and preceding discharges. (a) The distribution of durations of preceding 
discharges. Scatterplots of durations of preceding discharges versus (b) 
Rise time, (c) Fall time, (d) Pulse width, (e) The ratio of fall time to rise 
time, and (d) Peak currents of stroke pulses. Blue bars and points represent 
strokes on the sea and black ones on land. Red diamonds in panel (f) 
represent mean values of peak currents in each 100- 𝐴𝐴 𝐴𝐴 s range.
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Waveforms of all 98 strokes with peak currents larger than 150 kA are provided in the data repository (see 
Acknowledgment). We can see that almost all waveforms are somewhat different from those of normal 
return strokes, although it is rather subjective to determine what kind of waveforms are “normal.” The 
strongest stroke we found that looks very like a normal return stroke and was preceded by discharges with 
obvious two stages presumably corresponding to the PB and stepped leader has a peak current of −148 kA. 
Its E-change waveform is shown in Figure S9 in Supporting Information S1.

3.2.  Current Reflection in Stroke Channels

An interesting feature of waveforms of these strong strokes is that a small pulse sometimes can be found 
superimposed on the negative cycle of the stroke pulse. Examples can be found in Figures  1a, 1c, 1h 
and 1i. Two strong pulses reported to be associated with downward TGFs in winter thunderstorms (Wada 
et al., 2020) also had such features. The origin of the small pulses is not yet clear. Here we demonstrate that 
the small pulses are due to the current reflection in return stroke channels.

First, it should be noted that features of the small pulse are varied; they are not always as pronounced 
as those reported by Wada et al. (2020) and are not always right at the negative cycle of the stroke pulse. 
Figures 3a–3d show some examples of small pulses with different features. The small pulses indicated by 
purple arrows are treated as the same phenomenon in the following analysis.

We found 62 strokes with recognizable small pulses such as those in Figures 3a–3d. These small pulses are 
identified as the most significant pulse between the main peak and the end of the negative cycle. Figures of 
their E-change waveforms are provided in the data repository. We calculated the time difference between 
the small pulse and the onset of the stroke pulse. The definition of the time difference, denoted as 𝐴𝐴 Δ𝑡𝑡 , is 
illustrated in Figure 3a. The correlation between the time difference 𝐴𝐴 Δ𝑡𝑡 and the duration of preceding dis-
charges is shown in Figure 3e. We can see that the two parameters show a very strong correlation with a 
correlation coefficient of 0.81.

Our previous study demonstrated that when the duration of preceding discharges is very small, the preced-
ing discharges are likely produced by a downward negative leader developing directly to the ground, and 
thus the duration is related to the stroke channel length (Wu et al., 2021). Therefore, the strong correlation 
in Figure 3e indicates that the time difference 𝐴𝐴 Δ𝑡𝑡 is also related to the stroke channel length, and a reasona-
ble explanation is that the small pulse is produced by the current reflection in the stroke channel.

Assuming that the reflected pulse is produced when the return stroke wave is reflected from the upper end 
of the channel, the slope of the linear regression line (which is 0.052) in Figure 3e equals the ratio of the 
leader velocity to the return stroke velocity. For the velocity of the downward negative leader, we have es-
timated that the velocity is about 3 ×106 m/s for cases with durations of preceding discharges smaller than 
200 𝐴𝐴 𝐴𝐴 s (Wu et al., 2021). The leader velocity of a strong stroke observed directly by the optical system LAPOS 
analyzed in Section 3.3 is about 5 ×106 m/s. If we use these values as the leader velocity, the return stroke 
velocity would be 5.8 to 9.6 ×107 m/s, which is slightly smaller than return stroke velocities reported in the 
literature (Rakov, 2007). However, considering the fact that the velocity decreases as the return stroke wave 
propagates and that most previous measurements mainly focused on velocities at the channel bottom, our 
result can be considered as a reasonable result. Moreover, the above estimation assumes a fixed upper end of 
the return stroke channel. In reality, the upper end may extend upward during the downward propagation 
of the negative leader, resulting in an underestimation of the return stroke velocity.

The above estimation demonstrates that the current reflection is a plausible explanation for the small puls-
es. It also provides supporting evidence that these special strokes are return strokes. The estimation is also 
consistent with the assumption of a downward negative leader with the velocity on the order of 𝐴𝐴 106 m/s 
right before these strong strokes. It is also an expected result that strong negative return strokes are usually 
preceded by fast negative leaders (Nag & Cummins, 2017; Shi et al., 2019; Zhu et al., 2015).
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3.3.  A Strong Stroke Observed by the LAPOS

A negative stroke with a JLDN-reported peak current of −335 kA was observed by the high-speed optical 
system LAPOS, enabling us to directly estimate the speed of the return stroke and the preceding downward 
leader.

E-change waveforms recorded by two sites of the FALMA and light intensity waveforms recorded by the 
LAPOS are shown in Figure 4. Time zero corresponds to the first detected pulse indicated by the red arrow 
in Figure 4b. All FALMA sites were saturated by this stroke, and Figure 4a shows the least saturated wave-
form. We can see that the E-change waveform of this stroke is generally similar to those in Figures 1a–1j. 
Figure 4b shows the E-change waveform recorded by a site 6 km away. Due to the close distance, we can 
clearly identify the first pulse. The duration of preceding discharges is about 357 𝐴𝐴 𝐴𝐴 s.

Figure 3.  (a)–(d) Stroke pulses with different types of reflected pulses. Purple arrows indicate reflection pulses. The red 
horizontal line in panel (a) represents the definition of the time difference between the reflection pulse and the onset of 
the return stroke ( 𝐴𝐴 Δ𝑡𝑡 ) (e) Correlation between the time difference 𝐴𝐴 Δ𝑡𝑡 and the duration of preceding discharges.
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Figure 4c shows the light intensity waveform recorded by the high-sensitivity photodiodes of the LAPOS. 
Similar waveforms from negative CG strokes were reported by Wang et al. (2015). We can see that the first 
clear light signal was detected by channel 6 at the height of 1,205 m and at the time of 156.1 𝐴𝐴 𝐴𝐴 s. Note that 
the time corresponds to the onset of the pulse and is calculated as the time of 20% pulse peak (Huang 
et al., 2020). It is likely that before the time of 156.1 𝐴𝐴 𝐴𝐴 s, the leader was propagating inside the thundercloud 
and thus could not be detected by the LAPOS. The second light pulse was detected by channel 4 at the 
height of 912 m at the time of 228.1 𝐴𝐴 𝐴𝐴 s and the third by channel 2 at the height of 624 m and at the time 
of 281.7 𝐴𝐴 𝐴𝐴 s. Variations of the height and time of these channels indicate a leader propagating downward, 
and no other light signals detected before these signals indicate that this flash started from inside the cloud. 
From channels 6 and 4, we can estimate that the speed of the downward leader is 4.1 ×106 m/s, and from 
channels 4 and 2, the estimated speed is 5.4 ×106 m/s. These values are one order of magnitude larger than 
the typical speed of stepped leaders before first return strokes in negative CG flashes but are similar to 
the speed of downward negative leaders preceding compact return strokes in winter thunderstorms (Wu 
et al., 2021).

Figure 4.  A stroke with a peak current of −335 kA observed by the lightning attachment process observation system 
(LAPOS) and the fast antenna lightning mapping array (FALMA). E-change waveforms observed by FALMA sites at 
distances of (a) 56 km and (b) 6 km. Waveforms of light intensity observed by (c) High-sensitivity photodiodes and (d) 
Low-sensitivity photodiodes of LAPOS. The red arrow in panel (b) indicates the first identified pulse before the stroke. 
Values of 𝐴𝐴 𝐴 and 𝐴𝐴 𝐴𝐴 represent the height and onset time of light pulses observed by the LAPOS.
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Figure 4d shows the light intensity waveform recorded by the low-sensitivity photodiodes of the LAPOS. 
These light signals mainly correspond to the return stroke process. Two large pulses were detected by chan-
nels 1 and 5, from which we can estimate that the speed of the return stroke was 1.5 ×108 m/s, a typical 
return stroke speed. Channel 7 also detected a pulse but it was relatively weak and had large noise, probably 
because the return stroke wave already developed into the cloud. That channel 3 did not have any response 
may be due to a malfunction of the channel.

Assuming the light intensity recorded by the LAPOS is proportional to the peak current (Idone & Or-
ville, 1985; Wang et al., 2005), we can roughly estimate the peak currents of the stepping processes of the 
downward negative leader. In Figures 4a and 4d, a leader pulse is observed by Channel 1 indicated by the 
red dashed line. The ratio of the light intensity of the leader pulse peak to the return stroke pulse peak 
measured by the same channel is 0.12. Neglecting current attenuation with height, we can estimate that 
the peak current of the leader pulse is about −40 kA. Peak currents of other leader pulses can be estimated 
from E-change magnitudes in Figure 4a by calculating the ratio to the E-change magnitude of the −40-kA 
leader pulse indicated by the red dashed line, assuming that the peak current of the leader pulse is propor-
tional to the E-change magnitude of its radiation electric field. Peak currents of four pulses of leader steps 
are estimated as shown in Figure 4a. The peak currents range from −5 to −40 kA. These values are one to 
two orders of magnitude larger than peak currents of downward stepped leaders inferred from magnetic 
or electric field observations (Shen et al., 2019; Thomson et al., 1985; Williams & Brook, 1963) and upward 
negative leaders in triggered lightning or from tall objects (Miki et  al.,  2014; Pu et  al.,  2017; Watanabe 
et al., 2019; Zhou et al., 2012). In fact, strong strokes analyzed in this study are almost always preceded by 
clear leader pulses as shown in Figures 1a–1j, indicating strong peak currents of stepped leaders. A strong 
negative stroke reported by Lyu et al. (2015) was also preceded by large leader pulses. We speculate that 
strong negative strokes may be usually preceded by strong leader pulses.

The above analysis demonstrated unambiguously that the strong stroke in Figure 4 was preceded by a fast 
downward negative leader with large currents. The negative leader connected to the ground and initiated 
the return stroke, which produced the exceptionally strong pulse.

4.  Discussion and Conclusion
In this study, we presented conclusive evidence that strong negative return strokes with peak currents larger 
than 150 kA in winter thunderstorms in Japan produce unusual E-change waveforms that are generally 
different from those produced by first return strokes in normal negative CG flashes. As lightning location 
systems such as NLDN in the US (e.g., Cummins & Murphy, 2009) and JLDN in Japan classify CG flashes 
based on waveform characteristics of return strokes, it is possible that some of these strongest negative re-
turn strokes in winter are not identified by these systems. In fact, the two strong strokes with peak currents 
of −260 kA and −197 kA reported to be associated with downward TGFs were identified as intracloud dis-
charges by JLDN (Wada et al., 2020). The fact that few studies have investigated strong negative CG flashes 
or return strokes in winter may be simply due to the uncertainty in identifying strong negative strokes in 
winter.

The finding that the unusual pulses such as those in Figures 1a–1j are produced by return strokes makes 
it doubtful that whether they are directly associated with TGFs (Wada et al., 2020). It is well known that 
TGFs are usually associated with upward negative leaders in intracloud flashes (Cummer et al., 2015; Lu 
et al., 2010). Pu et al. (2020) also reported a downward TGF produced during a downward negative leader 
preceding a negative return stroke. We have demonstrated that these strong negative return strokes are 
preceded by a fast and powerful downward negative leader. Therefore, it is possible that it is actually the 
strong leader pulses right before negative return strokes, rather than the return strokes themselves, that are 
associated with TGFs.

The duration of the preceding leader pulses is closely related to the properties of the stroke pulse as demon-
strated in Figure 2. Wu et al. (2021) recently reported that strokes with durations of preceding discharges 
shorter than 200 𝐴𝐴 𝐴𝐴 s mostly occurred in mountain areas and were inferred to have very short (on average 
300 m) channels and were named “compact strokes.” Wu et al.  (2021) demonstrated that LBEs reported 
by Wu et al. (2014) were also compact strokes. Lyu et al. (2021) recently reported a type of strong pulses 
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that were located in the high mountains of the western US in summer. Those pulses share the same fea-
ture as pulses of strong strokes analyzed in this study: some small pulses with durations of a few hundred 
microseconds followed by a large pulse. Lyu et al. (2021) speculated that those pulses were produced by 
terrain-initiated upward positive leaders, which might be wrong if the pulses had the same nature as those 
analyzed in this study.

Finally, we point out that these strong negative strokes are likely “superbolts” observed by the WWLLN 
(Holzworth et al., 2019) and from the space (Ripoll et al., 2021). Holzworth et al. (2019) reported that most 
superbolts observed by the WWLLN occurred in winter, and the sea of Japan is one of the hotspots. Further, 
Holzworth et al. (2019) examined superbolts (with energy larger than 𝐴𝐴 106 J) that were also observed by the 
ENTLN (Mallick et al., 2015), and they found that out of 18 matches, 14 were negative strokes with peak 
currents larger than 100 kA. Ripoll et al. (2021) reported that only 15% superbolts were positive CG flashes, 
compared with 28% of positive CG flashes during their observation. Ripoll et al. (2021) also found that com-
pared with normal strokes, waveforms produced by superbolts have larger rise time and smaller fall time, 
“leading to a more symmetric ground wave.” These characteristics are all consistent with the characteristics 
of strong negative strokes analyzed in this study. Lyu et al. (2021) also suggested that similar pulses detected 
in high mountains in the US may be related to superbolts.

Strong negative strokes reported in this study are largely unknown in the lightning research community. 
Now that we have demonstrated that they are undoubtedly returned strokes in negative CG flashes, more 
efforts should be made to clarify their physical mechanisms, conditions for their productions, and relation-
ship with other lightning discharges and high-energy phenomena. It is also necessary to modify criteria 
employed by lightning location systems to classify return strokes.

Data Availability Statement
Related data can be found at https://doi.org/10.5281/zenodo.5150405.
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